Last modified: 2022-11-12
Abstract
Kasus positif Covid-19 di Indonesia terkonfirmasi berjumlah 4.255.672 hingga tahun 2021. Pemerintah Indonesia melakukan beberapa cara untuk menekan penyebaran Covid-19 dengan menerapkan PSBB. Namun kebijakan tersebut menyebabkan terbatasnya gerak masyarakat untuk mencari nafkah. Dari permasalahan tersebut pemerintah melalui Kementerian Sosial menyalurkan program BANSOS kepada masyarakat yang terdampak Covid-19. Namun dalam proses penyalurannya terdapat beberapa kendala mulai dari peraturan yang tidak selaras, data penerima bantuan sosial yang berbeda antara pemerintahan pusat dan daerah, dan adanya kasus korupsi. Permasalahan diatas ramai dibicarakan di media sosial, salah satunya twitter. Penelitian ini bertujuan untuk melakukan analisis sentimen terhadap tweet bantuan sosial Covid-19 dengan menggunakan metode Multinomial Naïve Bayes yang dibandingkan akurasinya terhadap metode Modified K-Nearest Neighbor. Data yang digunakan adalah tweet dalam bahasa Indonesia, diperoleh dari API Twitter dengan kata kunci “bansos”, dengan jumlah sebanyak 3451 tweet. Dataset yang digunakan adalah data tweet dengan label positif dan negatif yang telah melewati tahap labeling menggunakan tools VADER. Hasil penelitian ini menunjukkan akurasi terbaik yang dicapai metode Multinomial Naïve Bayes bernilai 73,6207 %, sedangkan metode Modified K-Nearest Neighbor menghasilkan akurasi terbaik bernilai 79,5862 %. Dengan demikian disimpulkan bahwa metode Modified K- Nearest Neighbor menghasilkan akurasi lebih tinggi dalam melakukan analisis sentimen.